Investor visit – Refineries
October 2005

Refineries flowsheet

- Overview
- BMR flowsheet
- PMR flowsheet
Why Springs?

- Infrastructure available from Geduld Gold Mine
- Proximity to Joburg International Airport
- Gas supply
- Chemistry and Engineering skills

Major achievements in safety

- 0.0 LTIFR including contractors for 25 months
- Benchmarking: NOSA – International Top 100, 7 NOSCAR Awards
- Won the MMMA competition for second year in 2005
 - Mine Metallurgical Managers Association
- Individual recognition awards from NOSA
- Meerkat programme
- Currently in “gap analysis” for OSHAS 18 000
Statistical overview:
Refineries health and safety history

Benchmarking – LTIFR
(200 000 hours)
Quality

- ISO 9002 Quality Management System (QMS)
 - first certification, July 1997
- ISO 9001 revised quality management system (QMS)
 - first certification, July 2002
- 12 external surveillance audits have been conducted on site thus far with one re-certification audit (September 2005)

Springs quality forum

- Presently Impala chairs the forum
- All issues related to the ISO 9001 QMS are discussed at these forums
Environmental

- First received certification in May 2000
- Re-certified in November 2004
- A total of 8 surveillance audits

Springs Air Forum

- Presently Impala chairs the Forum
- Working with local businesses and authorities
Blesbokspruit

- Blesbokspruit Forum
 - Impala is part of the monitoring committee

- Grootvaly Trust
 - developing a framework to develop the centre as an environmental education centre for the Springs area
 - main aim is to assist environmental affairs with the retention of the RAMSAR status

Employment equity - management

37% in management

Snr Management (current)	Middle Management (current)	Supervisory (current)	Other	HDSA
3 | 62 | 81 | 36 | 50
Women employed

- 17% Women, 139
- 83% Men, 764

Gross Pt and PGE production

Troy oz

FY 1995 - FY 2005

- Gross Pt
- Gross PGE
Gross base metal production

- Gross Ni
- Gross Cu

Employees and Pt oz/employee
Refineries unit costs

Refineries Unit Cost per Gross Pt oz

Refineries expansion

BMR

PMR
Expansion phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Resultant Capacity</th>
<th>End Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMR Phase I</td>
<td>1.6m ozs</td>
<td>Jul 2003</td>
<td>R18m</td>
</tr>
<tr>
<td>PMR Phase II</td>
<td>2m ozs</td>
<td>June 2006</td>
<td>R225m</td>
</tr>
<tr>
<td>PMR Phase III</td>
<td>2.3m ozs</td>
<td>June 2007</td>
<td>R40m</td>
</tr>
<tr>
<td>BMR Phase I</td>
<td>2m ozs</td>
<td>Jul 2005</td>
<td>R398m</td>
</tr>
<tr>
<td>BMR Phase II</td>
<td>2.3m ozs</td>
<td>June 2007</td>
<td>R300m</td>
</tr>
</tbody>
</table>

Simplified flow diagram

The diagram illustrates the processing flow of various metals including Palladium, Platinum, Gold, Rhodium, Ruthenium, Iridium, Nickel, Cobalt, Copper, and Cobalt powder. It outlines the steps from milling and flotation to concentration and precipitation, highlighting key stages such as dissolution, ion exchange, and purification.

- **Base Metals Refinery**: Processing stages like milling, flotation, and precipitation are shown.
- **Platinum Metals Refinery**: Emphasizes the purification and precipitation processes for platinum group metals.
- **Acad Drg No**: PRP_STD_P_0240

This diagram provides a comprehensive view of the refining process, detailing each step from raw materials to purified products.
Objective

To upgrade the PGM content of the feed to a level suitable for the refining of the PGM’s in the Precious Metals Refinery, while simultaneously and cost-effectively extracting the base metals – nickel, copper and cobalt – from the converter matte and converting them into quality saleable products.
Across-the-fence hydrogen

- Successfully installed in late March
- Required as current H2 reformers too small for the new natural gas feed
- 18-hour storage in the 110km pipeline gives instant usage after frequent power outages and ample time for compressor or PSA repairs
- Very minor capital expenditure
- 99.999% pure compared with 97% – better reduction kinetics – capacity
- Hydrogen plants on care and maintenance therefore no CO2 greenhouse emissions +/- 22t/day
Across-the-fence hydrogen (cont)

- Opportunity cost of Reformer steam (4t/hr or some 7% of total refineries steam consumption) and cooling water to be used for capacity
- Less risk in the case of the large boilers becoming incapacitated
- Cheaper gas over life of project
- Opportunity for credits for third party hydrogen off-take
- More constant pressure provision

Zero liquid effluent

- Effluent treatment process for the treatment of rainwater run-off
- Recycling of up to 900m3 of good quality water a day to the plant (RWB R3.71/m3 ≅ R1.2m/a)
Precious metals refinery

Objective

To cost-effectively separate the various platinum group metals contained in the PGM concentrate from the Base Metals Refinery into individually pure and saleable metals.
Precious metals refinery philosophy

Classical process
- low yields and high inventory

PMR philosophy
- quantitative and selective

Precious metals refinery flowsheet
Toll-Out production

![Toll-Out production chart]

Pipeline days

<table>
<thead>
<tr>
<th>Financial Year</th>
<th>1995</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>85</td>
<td>33</td>
</tr>
<tr>
<td>Palladium</td>
<td>108</td>
<td>51</td>
</tr>
<tr>
<td>Rhodium</td>
<td>315</td>
<td>91</td>
</tr>
<tr>
<td>Iridium</td>
<td>1,138</td>
<td>283</td>
</tr>
</tbody>
</table>
Annual rhodium production

Financial Years to June

00's ozs

Rh gross Rh ex mine

Impala Refining Services
Impala Refining Services (IRS)

- Officially created in 1998
- Dedicated vehicle for toll-refining and metal concentrate purchases
 - leverage surface assets and expertise
 - reduce unit costs (through economies of scale)
 - seek growth through strategic alliances and joint ventures

Key benefits

- Key benefits of growth through IRS
 - reduced exposure to mining risk
 - lower investment
 - exploitation of smaller deposits possible
 - increased process throughput
How does IRS work?

- Confirmation of third party resource
- Impurity distribution
- PGM grade
- Aggregate volume/capacity availability
- Equity involvement
- Contract establishment

Tolling relationship with Impala Platinum Limited

- Wholly-owned subsidiary
- Arm’s length toll-refining agreement
 - Metal recoveries
 - Metal pricing
 - Processing costs
 - Metal pipelines
- Sampling / Analysis
Contract structures

- Metal purchase agreements
 - Metal purchase after an agreed processing period
 - IRS retains agreed proportion portion of metal value
- Toll refining agreements
 - Percentage return of market value
 - Refining
 - Smelting
 - Handling charge

Future growth

- Autocatalyst and secondary refining
- Everest South / Two Rivers
- Mine Concentrates
IRS: platinum production

Platinum production profile: matte / concentrate / other

IRS: PGM production

PGM production profile: matte / concentrate / other
Ambatovy

- Dynatec - 37.5%
- Implats - 37.5%
- Sumitomo - 25%
- Nickel laterite in Madagascar
- Mining and ore treatment to mixed sulphide in Madagascar
- Refining to cobalt and nickel metal in Springs

Ambatovy

- Nickel - 60 000tpa from Madagascar and 20 000tpa from Implats operation
- Cobalt - 5 800tpa
- Large ammonium sulphate credit
- 27-year mine life
Implats’ motivation

- Save on further capital requirements in current BMR operation
- Dilute current BMR fixed cost structure over a larger production volume
- Leverage skills, infrastructure and hydrogen pipeline
- Involvement in a world – class primary nickel producer

Current status

- Under feasibility study with Hatch – SNC JV in Woodmead
- Study complete in February 2005
- EIA well progressed submission before December 2005
- Metallurgical piloting complete
Pre-feasibility data

- 50% gearing
- Total project - $2.3 billion
- Lowest quartile operating costs
- Approximately 12% capital spend at Springs

Madagascar - Ambatovy Project